Mathématiques

Question

bonjour mon professeur de math ma demander de trouver le chiffre des unites de 3 a la puissance 2015 et 3 a la puissance 4134

1 Réponse

  • cela revient à trouver le reste de la division du nombre 3^2015 par 10
    on cherchant le reste de la division euclidienne des puissances successives de 3 par le nombre 10 on trouve le cycle  3;9;7;1
    ainsi
    si n=4k (multiple de 4)  on a 3^n a pour chiffre des dizaines est 1
    si n=4k+1 (n-1 est multiple de 4)  on a 3^n a pour chiffre des dizaines est 3
    si n=4k+2 (n-2 est multiple de 4)  on a 3^n a pour chiffre des dizaines est 9
    si n=4k+3 (n+1 est multiple de 4)  on a 3^n a pour chiffre des dizaines est 7
    application :
    pour n=2015=4×503+3 on a 3^2015 a pour chiffre des dizaines est 7
    pour n=4134=4×1033+2 on a 3^4134 a pour chiffre des dizaines est 9










Autres questions